Nadia S. Larsen University of Oslo

Equilibrium states of C*-algebras associated to right LCM monoids

Nadia S. Larsen University of Oslo

Developments in modern mathematics

WiMGo conference, University of Göttingen 18 September 2023

Nadia S. Larsen University of Oslo

Equilibrium states for C^* -algebras

KMS (equilibrium) states for a C*-dynamical system (A, σ):

 $\sigma: \mathbb{R} \to \mathsf{Aut}(\mathcal{A}), \text{ time evolution},$

originate in mathematical physics/statistical mechanics. Some landmarks:

(i) Finite quantum systems and inner flows, 1960's.

- (ii) Fermion algebra and approximately inner flows, 1970's.
- (iii) (\mathcal{A}, σ), σ not approximately inner flow, late 1970's.

Example from number theory with rich phase transition:

(iv) The Bost-Connes algebra, 1990's.

 C^* -algebras from monoids with phase transition:

- (v) The C^* -algebra of the affine semigroup of the rational numbers, 2010's.
- (vi) A wealth of examples with ${\cal A}$ constructed from monoids in the past decade.

Nadia S. Larsen University of Oslo

The KMS condition for finite systems

Finite quantum system: $\mathcal{A} = M_n(\mathbb{C})$ with (necessarily)

$$\sigma_t(A) = e^{itH}Ae^{-itH},$$

where $t \in \mathbb{R}$, $A \in M_n(\mathbb{C})$ and H is a self-adjoint matrix. For $\beta > 0$, the *Gibbs state* is $\varphi_G(A) = \frac{\operatorname{Tr}(Ae^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})}$. It minimizes the free energy and satisfies

$$\varphi_G(A_1A_2) = \varphi_G(A_2\sigma_{i\beta}(A_1)), \qquad (1)$$

for $A_1, A_2 \in M_n(\mathbb{C})$ analytic, i.e. $t \mapsto \sigma_t(A_j)$ extends to an entire function on \mathbb{C} , j = 1, 2.

Partition function of $(M_n(\mathbb{C}), \sigma)$ is $\beta \mapsto \text{Tr}(e^{-\beta H})$.

The KMS condition (1), cf. Haag-Hugenholtz-Winninck (1967) defines equilibrium for a state of a system (A, σ) at inverse temperature β . KMS for Kubo-Martin-Schwinger.

Nadia S. Larsen University of Oslo

KMS states cf. Haag-Hugenholtz-Winninck

By analogy with finite systems and the Gibbs states, extend the notions of KMS_{β} state, partition function, inverse temperature.

 \mathcal{A} C^* -algebra, $\sigma : \mathbb{R} \to \operatorname{Aut}(\mathcal{A})$ time evolution, φ a state on \mathcal{A} . Say that:

(1) φ is KMS $_{\beta}$ (at inverse temperature $\beta \in [0,\infty)$) if

$$\varphi(a_1a_2) = \varphi(a_2\sigma_{i\beta}(a_1))$$

for all $a_1, a_2 \in \mathcal{A}$ with a_j in a dense subalgebra of *analytic* elements.

2 A state φ is a ground state if for all a₁, a₂ with a₂ analytic, the function z → φ(a₁σ_z(a₂)) is bounded in the upper-half plane.

3 KMS_{∞} if $\varphi = w^* \lim \varphi_n$ as $\beta_n \to \infty$ and φ_n is KMS_{β_n}. References: *Bratteli-Robinson*, *Pedersen*, *Connes-Marcolli*.

Nadia S. Larsen University of Oslo

Systems without approx. inner flows

Olesen-Pedersen (1978), Evans (1980). KMS states for the extended Cuntz algebra $\mathcal{A} = C^*(\mathbb{F}_n^+)$, with \mathbb{F}_n^+ the free monoid on *n* generators. \mathcal{A} is universal for *n* isometries s_1, s_2, \ldots, s_n with $\sum_{j=1}^n s_j s_j^* < 1$. Time evolution determined by

$$\sigma_t(s_j) = e^{it}s_j, t \in \mathbb{R}, j = 1, \dots, n.$$

Form $s_{\mu} = s_{j_1} \dots s_{j_m}$ representing words $\mu = j_1 j_2 \dots j_m$ in \mathbb{F}_n^+ of length $|\mu| = m \ge 1$. There is a conditional expectation E onto

$$D = \overline{\operatorname{span}}\{s_{\mu}s_{\mu}^* \mid \mu \in \mathbb{F}_n^+\},$$

a commutative C^* -subalgebra with spectrum \widehat{D} the compactification of the space of finite paths in \mathbb{F}_n^+ . For $\beta \ge \log n$ there is a unique KMS_β state s.t.

$$\varphi_{\beta}(s_{\mu}s_{\nu}^{*})=e^{-|\mu|eta}\delta_{\mu,
u}$$

lifted via *E* from the prob. measure $\delta_{\mu} \mapsto (1 - ne^{-\beta})e^{-\beta|\mu|}$ above log *n*. The "inverse temperature space": [log *n*, ∞).

Nadia S. Larsen University of Oslo

C*-algebras from (left) cancellative monoids

Interrelated trajectories of development around KMS states:

- (I) New classes of examples. Supply of examples grows, new opportunities.
- (II) Identify common features from looking at disparate classes of monoids P and develop a common method for C*(P). Impetus comes from new classes of examples that do not fit existing paradigm.

Tractable $C^*(P)$: nuclear, interesting ideals and quotients. As point of departure: $C^*(P)$ should have generators v_p with

- $v_p^*v_p = 1 = v_e$, i.e. isometry where $e \in P$ identity;
- $v_p v_p^* \leq 1$, i.e. not necessarily a unitary;

• $v_p v_q = v_{pq}, p, q \in P$, i.e. representation of P.

Semigroup C*-algebras: Nica (1994), for P subsemigroup in a group forming a quasi-lattice order (e.g. \mathbb{F}_n^+ inside \mathbb{F}_n).

Nadia S. Larsen University of Oslo

Monoids and equilibrium states: motivation

 ${\cal A}$ a C^* -algebra, $\sigma:\mathbb{R}\curvearrowright {\cal A}$ a one-parameter group. Suppose $V^*V=1_A, VV^*<1_A,$

and $V \mapsto N(V) \in (0,\infty)$ s.t. $\sigma_t(V) = N(V)^{it}V$.

If $\varphi:\mathcal{A}\rightarrow\mathbb{C}$ is a KMS state at $\beta>$ 0, then

$$\varphi(VV^*) = N(V)^{-\beta}\varphi(V^*V) = N(V)^{-\beta}.$$

For *P* a left-cancellative monoid, $\mathcal{A} = C^*(P)$ is generated, as a minimum, by isometries v_p with $v_p v_q = v_{pq}, p, q, \in P$. If $N : P \to (0, \infty)$ is a homomorphism (a *scale*), define $\sigma^N : \mathbb{R} \curvearrowright \mathcal{A}$

$$\sigma_t^N(v_p)=N_p^{it}v_p, p\in P.$$

An equilibrium state φ_{β} must have prescribed values $\varphi_{\beta}(v_{p}v_{p}^{*})$, $p \in P$. Are there φ_{β} 's? For what β 's?

Nadia S. Larsen University of Oslo

Affine monoids

Laca-Raeburn (2010). Consider $\mathbb{N} \rtimes \mathbb{N}^{\times}$ inside $\mathbb{Q} \rtimes \mathbb{Q}_{+}^{\times}$, with $(\mathbb{Q}, +)$ and $(\mathbb{Q}_{+}^{\times}, \cdot)$. Let \mathcal{P} denote the set of primes. Then

$$\mathcal{C}^*(\mathbb{N}\rtimes\mathbb{N}^{\times})=\mathcal{C}^*\langle s, v_\mathfrak{p}, \mathfrak{p}\in\mathcal{P}\mid \mathsf{relations}\rangle$$

with time evolution σ^N where N(s) = 1, $N(v_p) = p$. The inverse temperature space consists of $[1, \infty]$ and ground states:

- 1 If $\beta \in [1,2]$, there is a unique KMS $_{\beta}$ state.
- 2 If β ∈ (2,∞], the KMS_β states are parametrised by probability measures on T.
- 3 Ground states form a convex set isomorphic to the state space of *T*, the Toeplitz C*-algebra gen. by the unilateral shift on ℓ²(N).

4 Partition function: $\zeta(\beta) := \sum_{n \in \mathbb{N}} n^{-\beta-1}$, with pole at $\beta = 2$.

Crucial point: an expectation onto a comm. subalgebra with spectrum a "compactification" of a path space associated to the quasi-lattice order from $\mathbb{N} \rtimes \mathbb{N}^{\times}$ inside $\mathbb{Q} \rtimes \mathbb{Q}_{+}^{\times}$.

Nadia S. Larsen University of Oslo

KMS states for monoid C^* -algebras

Generalisations to many q.l.o. (G, P): inverse temperature space (except ground states) of form $[1, \infty]$:

- Clark-an Huef-Raeburn, Baumslag-Solitar monoids (certain one-relator monoids) that form quasi-lattice orders inside their groups.
- Afsar-Brownlowe-L-Stammeier, Brownlowe-L-Ramagge-Stammeier for P right LCM, including Baumslag-Solitar monoids that form weak quasi lattice orders.
- Neshveyev-Stammeier, uniqueness of φ_{βc} at a critical value β_c using groupoid realisation of the C*-algebras.

Key to (1)-(2): sufficiently special features of the *scale* $N : P \to (0, \infty)$, in particular $N(P) \subset \mathbb{N}^{\times}$ with some irreducibility properties.

But, scales on (most) Artin monoids fail these properties.

Right LCM monoids and equilibrium states

C*-algebras of monoids and their KMS states: We see algebraic structure from irreversibility of monoids in fruitful interaction with analytic features enabling existence of these special positive functionals φ with

$$\varphi(a_1a_2) = \varphi(a_2\sigma_{i\beta}(a_1))$$

for some real β and all a_1, a_2 analytic.

C*-algebras of right LCM monoids and their KMS states: The algebraic structure from irreversibility of monoids reflects, and is facilitated by, divisibility type properties in P.

Nadia S. Larsen University of Oslo

C^* -algebras of monoids: reduced and full

Let *P* be a left-cancellative monoid. The *reduced* C*-algebra is $C_{\lambda}^{*}(P) = C^{*}\langle T_{p} | T_{p}\varepsilon_{q} = \varepsilon_{pq}, p, q \in P \rangle \subset B(\ell^{2}(P)),$ where $\{\varepsilon_{p}\}_{p}$ is the canonical o.n.b. in $\ell^{2}(P)$.

The full/universal C*-algebra $C^*(P)$ should be generated by, as a minimum, elements v_p s.t., mirroring T_p 's,

$$v_{p}^{*}v_{p} = 1, v_{p}v_{p}^{*} \leq 1, v_{p}v_{q} = v_{pq}, p, q \in P.$$

One tractable theory requires conditional least upper bounds under the partial order $p \le r$ iff $r \in pP$. *Nica* (1994): for $P \subset G$ a subsemigroup of a discrete group, $P \cap P^{-1} = \{e\}$, partial order

$$x \leq z \iff x^{-1}z \in P, \text{ for } x, z \in G,$$

require that a least common upper bound $x \lor y$ for $x, y \in G$, if it exists in P, is unique (quasi lattice orders). Extension to left cancellative P by Li (2012), Norling (2014), Sehnem (2019).

Nadia S. Larsen University of Oslo

Some relevant classes of monoids

Quasi-lattice ordered pairs (G, P):

- (G, P), G totally ordered abelian with positive cone P (Douglas, Murphy);
- $(\mathbb{F}_n, \mathbb{F}_n^+)$ (Nica);
- right-angled Artin group-monoid pairs (G, P), (Crisp-Laca);
- affine monoids, e.g. $\mathbb{N} \rtimes \mathbb{N}^{\times}$, (*Laca-Raeburn*);
- Baumslag-Solitar monoids with matching signs, (*Spielberg, Clark-an Huef-Raeburn*);

Weak q.l.o. pairs, asking for $p \lor q$ to be unique in P, if it exists, only when $p, q \in P$:

- All Artin monoids (*Brieskorn-Saito*);
- Baumslag-Solitar monoids with opposite signs, (Spielberg).

Nadia S. Larsen University of Oslo

Equilibrium states of $C^*_{\lambda}(P)$ for P q.l.o.

Theorem (Bruce-Laca-Ramagge-Sims (2018))

Let (G, P) be q.l.o and assume $N : P \to [1, \infty)$ satisfies N(p) = 1 only for p = e. Suppose that the Dirichlet series $\sum_{p \in P} N(p)^{-\beta}$ has abscissa of convergence $0 < \beta_c < \infty$. Define the generalised Gibbs state φ_{β} at $\beta > \beta_c$ on $B(\ell^2(P))$

$$\varphi_{\beta}(A) = rac{\operatorname{Tr}(Ae^{-eta H})}{\operatorname{Tr}(e^{-eta H})}$$

where $H\varepsilon_p = \log N(p)\varepsilon_p$ on $\ell^2(P)$ (s.a. unbounded). Then, for $\beta > \beta_c$, φ_β is the unique KMS_β state. At β_c there is a unique equilibrium state (obtained as a w^{*}-limit point of (φ_{β_n}) , $\beta_n \to \beta_c$).

Unclear whether KMS_{β} states exist for $\beta \in [0, \beta_c)$.

Nadia S. Larsen University of Oslo

Right LCM (right least common multiples) monoids

P left cancellative monoid (or category).

- 1 $r \in P$ is a *right multiple* of $p \in P$ if r = pp' for $p' \in P$.
- 2 $r \in P$ is a *common right multiple* of p, q in P if

$$r = pp' = qq'$$
 for $p', q' \in P$.

3 *P* is right LCM (has conditional right LCM's) if every *p*, *q* with a common right multiple admit a least common right multiple, written $pP \cap qP \neq \emptyset$.

If P is right LCM, then $C^*(P)$ is generated by isometries v_p subject to $v_p v_q = v_{pq}$ and

$$v_q^* v_p = \begin{cases} v_{q'} v_{p'}^* & \text{if } pP \cap qP \neq \emptyset, \\ 0 & \text{if } pP \cap qP = \emptyset \end{cases}$$

for pp' = qq' = r, $p, q \in P$, (Clifford condition used by *Lawson*).

Nadia S. Larsen University of Oslo

The class of right-angled Artin monoids

Suppose that Γ is a simple (undirected) graph, finite or infinite. The associated *right-angled Artin group* G_{Γ} is given by generators s_i indexed by the vertices of Γ and relations

 $s_i s_j = s_j s_i$, if *i* and *j* share an edge.

Let S_{Γ} the set of the generators s_i (the standard generating set). Denote by $P_{\Gamma} \subset G_{\Gamma}$ the monoid generated by S_{Γ} . Then (G_{Γ}, P_{Γ}) is q.l.o. and these objects interpolate between $(\mathbb{Z}^k, \mathbb{N}^k)$ and $(\mathbb{F}_n, \mathbb{F}_n^+)$ (*Crisp-Laca*).

Suppose that $N: P_{\Gamma} \to (0,\infty)$ is a monoid homomorphism. Define C^* -dynamical systems

$$(C^*(P_{\Gamma}), \sigma^N)$$
 and $(C^*_{\lambda}(P_{\Gamma}), \sigma^N)$,

where $\sigma^{N}(v_{p}) = N(p)^{it}v_{p}$ and $\sigma^{N}(T_{p}) = N(p)^{it}T_{p}$, $t \in \mathbb{R}, p \in P_{\Gamma}$. Question: What are the KMS states?

Nadia S. Larsen University of Oslo

Equilibrium states for right-angled Artin monoids

Two approaches: by *Bruce-Laca-Ramagge-Sims and Afsar-L-Neshveyev*.

Let P_{Γ} be a non-abelian right-angled Artin monoid with finite generating set S_{Γ} . Let ℓ be normalised length function on P_{Γ} and set

$$N(p) = e^{\ell(p)}.$$

If the abscissa of convergence β_0 of $\sum_{p \in P} N(p)^{-\beta}$ is finite, then $(C^*(P_{\Gamma}), \sigma^N)$ has "inverse temperature space" $[\beta_0, \infty]$ (same for the reduced).

Question: What is the situation for other classes of Artin monoids, such as those of finite-type?

Need a new kind of insight than for previous classes of examples to see how KMS states could arise.

Nadia S. Larsen University of Oslo

Equilibrium states and a positivity condition

Afsar-L-Neshveyev, (2019). Let (G, P) be a weak quasi-lattice order, $N: P \to (0, \infty)$ a homomorphism, and $(C^*(P), \sigma^N)$ the associated C^* -dynamical system. Let $\Phi: C^*(P) \to \mathcal{F}$ the conditional expectation onto the fixed point-algebra for the canonical coaction of G.

For each $\beta \in \mathbb{R}$, there is a Φ -invariant (factoring through Φ) KMS_{β}-state iff

$$(*) \ \sum_{K \subset J} (-1)^{|K|} N(q_K)^{-\beta} \geq 0 \ \text{for all finite} \ J \subset P \setminus \{e\},$$

where $q_{\mathcal{K}} = \bigvee_{q \in \mathcal{K}} q$ whenever it exists in P, otherwise the term in the sum is set to 0.

Roughly, this constructs a KMS_{β} state from prescribed values $N(q_K)^{-\beta}$. However, the condition (*) involves an infinite collection of inequalities, so is unyielding.

Nadia S. Larsen University of Oslo

The positivity for right-angled Artin monoids

Afsar-L-Neshveyev, (2019). Suppose P_{Γ} is a right-angled Artin monoid on a graph Γ with standard generating set S_{Γ} . Let $C(S_{\Gamma})$ be the collection of finite cliques on the standard generators, i.e. the collection of sets of generators corresponding to complete finite subgraphs of Γ , and set $s_{K} = \prod_{s \in K} s$ for $K \in C(S_{\Gamma})$. There is a Φ -invariant equilibrium state at $\beta \in \mathbb{R}$ iff

$$(**) \sum_{K \in C(S_{\Gamma}): \atop K \subset J} (-1)^{|K|} N(s_{K})^{-\beta} \ge 0 \text{ for all finite } J \subset S_{\Gamma}.$$

This positivity-reduction, i.e. going from sufficiency of (*) to that of (**), is used in the right-angled case to settle that the inverse temperature space is a half-line. Does positivity reduction hold for other *P*?

Nadia S. Larsen University of Oslo

Artin monoids revisited

The Artin group associated to a Coxeter matrix $M = (m_{st})_{s,t \in S}$ is the group A_M with generating set S and presentation

$$\{S \mid \langle st \rangle^{m_{st}} = \langle ts \rangle^{m_{ts}} \text{ for all } s, t \in S\},$$

where $m_{st} = m_{ts} \in \{2, ..., \infty\}$ for $s \neq t$. Let A_M^+ be the monoid with the same presentation. It is of *finite type* if the Coxeter group determined by the presentation for A_M together with $s^2 = e$ for all s is finite. It is *right-angled* if m_{st} is 2 or ∞ .

Fact: All A_M^+ are right- and left-Noetherian. A left-cancellative monoid P is *right-Noetherian* provided that there exists no infinite ascending sequence in P with respect to proper left-divisibility. Thus for $q \in P$, every sequence

 $q = p_1 t_1 = p_1 p_2 t_2 = p_1 p_2 p_3 t_3 = \dots$

with p_n, t_n non-invertible must terminate. Similar for left-Noetherian.

Nadia S. Larsen University of Oslo

Characterising KMS states through positivity

Theorem (Gazdag-Laca-L (2022))

For P cancellative Noetherian right LCM and N : $P \rightarrow (0, \infty)$, existence of an expectation-invariant equilibrium state at β for $(C^*(P), \sigma^N)$ is determined by

(*)
$$\sum_{K \subset J} (-1)^{|K|} N(\vee K)^{-\beta} \ge 0$$
 for all finite $J \subset P \setminus P^*$

with $N(\lor K)^{-\beta} = 0$ if $\lor K = \infty$ (not a clique).

The result makes no reference to an ambient group, and applies to all Artin monoids, not just the quasi-lattice ordered ones (the right-angled).

Nadia S. Larsen University of Oslo

Reduction of the positivity condition

For the system ($C^*(P), \sigma^N$), an expectation invariant KMS $_\beta$ state exists subject to

$$(*) \sum_{K \subset J} (-1)^{|K|} N(\vee K)^{-\beta} \ge 0 \text{ for all finite } J \subset P \setminus P^*$$

with $N(\vee K)^{-\beta} = 0$ if $\vee K = \infty$ (not a clique).

Goal: reduce verifying (*) to verifying (**) involving subsets J of the set P_a of atoms: elements $a \in P$ without decompositions a = yz for $y, z \notin P^*$.

Idea: from $J = \{p_1, \ldots, p_n\}$, "remove" atoms *a* from its elements, in a two-step procedure leading to two new families J_1 and J_2 (first used by B. Li in the study of isometric dilations of contractive representations of *P* on Hilbert space), and propagate positivity from J_1, J_2 to *J*. Use lists $\lambda : \{1, \ldots, n\} \rightarrow P$ to accommodate repetitions in J_1, J_2 .

Nadia S. Larsen University of Oslo

A combinatorial tree for a list λ

For $\lambda(\{1, 2, \dots, n\}) = \{p_1, p_2, \dots, p_n\}$, i first with $a \le \lambda(i)$, set $\lambda_1(j) := \begin{cases} \lambda(j) & j \ne i \\ a & j = i; \end{cases} \lambda_2(j) := \begin{cases} a^{-1}(a \lor \lambda(j)) & a \lor \lambda(j) < \infty \\ \infty & a \lor \lambda(j) = \infty. \end{cases}$

Nadia S. Larsen University of Oslo

A combinatorial tree for Noetherian monoids

A list $\lambda : \{1, 2, ..., n\} \rightarrow P \cup \{\infty\}$ is a *leaf* if either its image consists of atoms of P or ∞ , or else if it intersects P^* (making the alternate sum equal to 0).

A branch is a finite or infinite word ω on the symbols $\{1, 2\}$ that starts at the root λ and ends at the first node such that the list after k-"steps" $\lambda_{\omega[1,k]}$ is a leaf, or does not end (if such a node does not exist).

Theorem (Gazdag-Laca-L (2022))

Let P be Noetherian right LCM. Suppose that the tree constructed above is finite for every list λ . Then reduction of positivity (*) to positivity (**) for subsets of atoms holds.

Proposition (GLL)

The tree of any list is finite for $P = A_M^+$ finite-type (since it is lattice ordered) or right-angled (since word length decreases along the tree).

Nadia S. Larsen University of Oslo

KMS gaps for Artin monoids

1

Suppose $n \ge 3$ and let B_n be the braid group with generating set $S = \{s_1, s_2, \dots, s_{n-1}\}$ and relations

$s_i s_j s_i = s_j s_i s_j$	when $ i - j = 1$
$s_i s_j = s_j s_i$	when $ i - j \ge 2$.

Let B_n^+ be the braid monoid and $N:B_n^+
ightarrow [1,\infty)$ be given by

$$\mathsf{N}(p) = \exp(\ell(p)), \ell(p) = |p|,$$

for $p \in B_n^+$. Let $\sigma = \sigma^N$. The clique polynomial

$$\sum_{K \in Cl(S)} (-1)^{|K|} t^{|\vee K|}$$

of $P = B_n^+$ is the reciprocal of the growth function $\sum_{n\geq 0} \#\{w \mid |w| = n\}t^n$.

Nadia S. Larsen University of Oslo

KMS gaps for Artin braid monoids

Proposition (GLL)

Let $t_1 = \sqrt{5}/2 - 1/2 \approx 0.618$ be the smallest positive root of the clique polynomial $1 - 2t + t^3$ of B_3^+ , and put $b_1 = -\log t_1$. Then the inverse temperature space of $(C^*(B_3^+), \sigma)$ is $\{0\} \cup [b_1, \infty]$.

Proposition (GLL)

Let r_1 be the smallest positive root of the polynomial $1 - 2t - t^2 + t^3 + t^4 + t^5$ of B_4^+ , and $c_1 = -\log r_1$. Then the inverse temperature space of $(C^*(B_4^+), \sigma)$ is $\{0\} \cup [c_1, \infty]$.

Thus:

Nadia S. Larsen University of Oslo

KMS gaps for Artin braid monoids

1 $(C^*(B_3^+), \sigma)$ has inverse temperature space $\{0\} \cup [b_1, \infty]$, for $e^{-\breve{b}_1}$ the smallest positive root of $1 - 2t + t^3$.

2 $(C^*(B^+_A), \sigma)$ has inverse temperature space $\{0\} \cup [c_1, \infty],$ for e^{-c_1} the smallest positive root of

$$1 - 2t - t^2 + t^3 + t^4 + t^5$$

Sketch of proof: known from Bruce-Laca-Ramagge-Sims that if a KMS_{β}-state exists for some $\beta \in (0, \beta_0)$, then $e^{-\beta}$ has to be a root of the clique polynomial in the interval $(e^{-\beta_0}, 1)$. Then test the positivity criterion (**) for finite-type A_M^+ to see if any such root leads to equilibrium states. The positivity fails at intermediate roots in the interval.

Conclusion: Searching for KMS_{β} states leads to looking quite closely into the structure of the monoid. Other monoids could be worth considering.

Nadia S. Larsen University of Oslo

OAMN - on behalf of Kristin Courtney

The Operator Algebra Mentor Network is a nonprofit organization providing mentorship and networking for members of the operator algebra (and adjacent) community from underrepresented genders.

Its primary focus is multi-tiered mentor groups with mentees from underrepresented genders at the PhD/early postdoc stage, junior mentors of diverse genders at the postdoc/ post-PhD stage, and senior mentors of diverse genders consisting of well-established members of the OA community.

If you are interested in getting involved or know someone who would be, check us out at

https://oamentornetwork.wordpress.com/

Nadia S. Larsen University of Oslo Final

THANK YOU!